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Abstract. A two-offspring branching annihilating random walk model, with finite reaction rates, is studied
in one-dimension. The model exhibits a transition from an active to an absorbing phase, expected to belong
to the DP2 universality class embracing systems that possess two symmetric absorbing states, which in one-
dimensional systems, is in many cases equivalent to parity conservation. The phase transition is studied
analytically through a mean-field like modification of the so-called parity interval method. The original
method of parity intervals allows for an exact analysis of the diffusion-controlled limit of infinite reaction
rate, where there is no active phase and hence no phase transition. For finite rates, we obtain a surprisingly
good description of the transition which compares favorably with the outcome of Monte Carlo simulations.
This provides one of the first analytical attempts to deal with the broadly studied DP2 universality class.

PACS. 02.50.Ey Stochastic processes – 05.50.+q Lattice theory and statistics (Ising, Potts, etc.) –
05.70.Ln Nonequilibrium and irreversible thermodynamics – 82.40.-g Chemical kinetics and reactions:
special regimes and techniques

1 Introduction

Phase transitions occurring away from thermodynamical
equilibrium constitute one of the most challenging topics
in statistical physics. They appear in a host of physical
systems as well as in many models in biology, chemistry,
sociology, etc. Given the lack of a general theory of non-
equilibrium systems, we are still living in a taxonomic era
in this field: it would be highly desirable to reach a com-
plete classification of the known phase transitions into uni-
versality classes, as a preliminary step to their full cate-
gorization, and identification of relevant features.

After more than twenty years of study, it has become
clear that the degree of universality is much narrower away
from equilibrium than it is in equilibrium transitions. Cer-
tainly, general properties such as symmetries, conservation
laws, dimensionalities, etc., play a key role, as they do in
equilibrium. But some other ingredients, such as micro-
scopic dynamical details, hard core interactions, and the
type of updating may, in some cases, influence the emerg-
ing critical behavior of non-equilibrium systems, making
the task of theoreticians both stimulating and difficult.

One of the most robust and best studied non-
equilibrium classes of transitions is directed percola-
tion (DP). It includes an amazing variety of models and
systems exhibiting a transition from an active to an ab-
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sorbing phase [1–6], and is well characterized at a field-
theoretical level by Reggeon field theory (RFT) [7,8].

DP is so robust, that identifying and classifying the
nature of perturbations able to drive absorbing phase
transitions away from this class has become a challeng-
ing task. Probably the best known instance of this is
the DP2 class, where the presence of two perfectly sym-
metric absorbing states (Z2 symmetry) is the main feature
responsible for non-DP scaling [9]. This class includes a
cellular automaton introduced by Grassberger et al. [10],
interacting monomer-dimer models [11], non-equilibrium
Ising models [12,13], monomer-monomer surface reaction
models [14], Z2-symmetric generalizations of DP [15] and
of the contact process [16], branching annihilating random
walks with conserved parity [17–19], and it has also been
related to generalized versions of the Voter model [20,21].
Extensive numerical simulations led to conjecture ratio-
nal exponent values for the DP2 class [22], though this
was later disproved by more exhaustive simulations [4].

Although the existence and robustness of the DP2 class
are well established from a numerical view-point, a solid
theoretical understanding is still missing. Bold attempts
to write down and renormalize a field theory suitable for
the DP2 class have been performed, but the results are
not as satisfactory as they are for RFT [23,24]. In partic-
ular, the renormalization is based on a clever, but some-
how uncontrolled expansion around two-different critical
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dimensions. As we shall illustrate below, straightforward
mean-field approaches (cluster approximations) fail to re-
produce a phase transition if too small clusters are consid-
ered, and one has to resort to large-clusters, which make
the calculation complicated and not very accurate, i.e.
the convergence of the series is very slow (although re-
sults can be improved if combined with coherent-anomaly
methods [13]).

It is the purpose of this paper to shed some light
on these issues, by examining models of Branching
Annihilating Walks with two offspring (2-BAW) in one
dimension: the 2-BAW with finite reaction rate exhibits
a phase transition in the DP2 class [25]. Our approach
is based on a mean-field modification of the method of
parity intervals, originally introduced for the study of an-
nihilation reactions, A + A → 0 [26–29]. A similar ap-
proach has been previously employed in conjunction with
the method of empty intervals [26,30,31] for the analysis of
other intractable models that do not conserve parity [32].
See [27,28] for a more detailed introduction to this method
and its applications to different models.

The paper is organized as follows. The 2-BAW model
is described in Section 2, where we also perform simple (up
to two sites) cluster approximations (which fail to capture
the transition). In Section 3 we present the exact solu-
tion of the 2-BAW model in the limit of infinite reaction
rate, using the method of parity-intervals. Although there
is no phase transition in this limit, the analysis serves as
a basis for the mean-field like approximation presented
in Section 4, for the relevant case of finite reaction rates.
There we derive the approximate steady-state solution for
generic parameter values, and compare it with the out-
come of Monte Carlo computer simulations. We conclude
with a critical discussion of our results and further devel-
opments, in Section 5.

2 The model and cluster approximations

The model is defined as follows. Each site of a one-
dimensional lattice is either empty or singly occupied. The
lattice is updated asynchronously: a randomly chosen par-
ticle attempts diffusion at rate Γ (probability Γ/(Γ +Ω)),
and branching at rate Ω (probability Ω/(Γ + Ω)); time is
increased by 1/N , where N is the number of occupied (ac-
tive) sites. In a diffusion attempt the particle is moved to
one of its two nearest neighbors (target sites), with equal
probabilities. If the target site is occupied, annihilation
results with probability r: the move is effected and both
particles, the diffuser and the target, are removed from
the lattice. The move is rejected with probability 1 − r,
and the lattice state remains unchanged. In a branching
attempt the particle gives birth to two new particles at the
nearest neighbor sites (target sites). If either, or both of
the target sites is occupied, annihilation takes place with
probability r: branching is effected, and the occupied tar-
get site(s) become empty. Once again, the move is rejected
with probability 1 − r, and the lattice state remains un-
changed.
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Fig. 1. One-site cluster approximation. Flow diagram, accord-
ing to equation (1), with dc/dt = 0. This shows that the root
cs = 0 is unstable, while the root cs > 0 is stable. Results from
the two-site approximation are very similar. The stationary
solution as a function of r is plotted in Figure 2.

In the diffusion-controlled limit of infinite reaction rate
(r = 1), the 2-BAW model is known to possess only
a steady absorbing phase [33]. However, for finite rates
(r < 1), a transition belonging to the DP2 class, from an
absorbing state, at r < rc, to an active phase, at r > rc, is
found in numerical simulations [25]. We now demonstrate
that simple mean-field approximations fail to capture this
transition.

The simplest conceivable mean-field theory is that of
the one-site approximation, obtained by neglecting all cor-
relations between the states of different sites. For exam-
ple, if the probability of one site being occupied is equal
to the concentration c, then the probability of finding one
occupied site followed immediately by an empty site is
c(1− c). There are only three events that lead to a change
in particle concentration: (i) annihilation of two particles
by diffusion, •• → ◦◦; (ii) creation of two particles via
birth, ◦ • ◦ → • • •; and (iii) annihilation of two particles
due to birth onto previously occupied sites, • • • → ◦ • ◦.
Note that the birth process ◦ • • → • • ◦ (and its mirror-
symmetric image) does not alter the concentration. How-
ever, processes (i) and (iii) occur with restricted probabil-
ity r. Thus

d

dt
c = −2rc2 + 2c(1− c)2 − 2rc3, (1)

where we took Γ = Ω = 1. The first, second and
third terms on the r.h.s. correspond to (i), (ii) and (iii),
respectively.

For the steady state, we set dc/dt = 0 and choose the
stable root (Fig. 1), cs = (2 + r − √8r + r2)/(2− 2r).
We conclude that according to the one-site approxima-
tion the system always evolves to an active phase, with
1/3 < cs < 1 (Fig. 2).

The two-site approximation provides the next level of
complexity. Let p be the conditional probability for a site
to be occupied, given that the adjacent site (to its left) is
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Fig. 2. Order parameter ρ as a function of r as obtained
from (a) Monte Carlo simulations (diamonds), (b) parity inter-
val approximation (lowermost curve), and (c) one-site cluster
approximation (uppermost curve): the curve shows the stable
root (see Fig. 1), (observe that ρ corresponds to cs in the clus-
ter approximation section). Note the absence of a transition
point in the third case.

occupied. Let q be the conditional probability for a site to
be occupied, given that the site to its left is empty. Thus,
the probability of the events ••, •◦, ◦•, ◦◦ is cp, c(1− p),
(1 − c)q, (1 − c)(1 − q), respectively. Note that since •◦
and ◦• are equally likely, we have,

c(1− p) = (1− c)q. (2)

(The same relation may be derived from the fact that
Pr(•) = Pr(••)+Pr(◦•).) Equation (1) is now rewritten as

d

dt
c = −2rcp + 2(1− c)q(1− p)− 2rcp2, (3)

where the terms on the r.h.s. correspond to the same
events as before. Setting dc/dt = 0 and using the rela-
tion (2), we obtain, for the steady state,

0 = −2rcp + 2c(1− p)2 − 2rcp2.

We conclude that either cs = 0 or ps = (2 + r −√
8r + r2)/(2− 2r). In the latter case, an additional evolu-

tion equation, for the event ••, provides the missing value
of cs: cs > 0 for all r. The result agrees closely with that
of the one-site approximation, with deviations not larger
than 20%. Thus, also the two-site approximation fails to
predict the transition. Considering larger clusters, a phase
transition can be generated [13,34], but a large set of cou-
pled equations (which enlarges with cluster-size) has to
be solved, the accuracy is not good, and the results are
expected to be valid only up to the cluster-size. In the
next section we present an alternative method intended
to overcome these difficulties.

3 Parity intervals and exact solution for r= 1

We now turn to a different approach, that of the method
of parity intervals [26–29]. We first present the exactly

soluble case of r = 1, for which there is no transition.
The exact approach followed here serves as a basis for
a mean-field like approximation, for the more interesting
case of r < 1 — an approximation that does capture the
transition and reproduces kinetic details surprisingly well.

Let Gn(t) be the probability that (in an homogeneous
system) an arbitrary segment of n consecutive sites con-
tains an even number of particles at time t. A site can be
either empty or occupied by a single particle, so the prob-
ability that a site is occupied, i.e., the particle density, is

ρ(t) = 1−G1(t). (4)

Since the dynamic rules of the two-offspring BAW con-
serve parity, the only way that Gn might change is when:
(i) particles at the edge of the segment hop outside or
branch, or (ii) particles just outside of the segment hop
inside or branch. Let and represent seg-
ments of even and odd number of particles, respectively.
Then, the changes of Gn can be described schematically
by the events:

d

dt
Gn =

n ←•+
n−1 →• − n ←•− n−1 →•

+
n
↙|↘
• +

n−1
↙|↘
• − n

↙|↘
• − n−1

↙|↘
• . (5)

Arrows in the first four terms indicate the hopping of a
particle to the left or right. In the last four terms, the
arrows indicate branching. For example, the first term
in (5) represents the event that a particle outside of an
n-segment of odd parity jumps in, thus creating an n-
segment of even parity.

For the case of immediate reactions, r = 1, the pro-
cesses indicated in (5) occur regardless of the state of tar-
get sites. It is easy to show (see [26–29]) that:

Fn ≡ Pr(
n •) =

1
2

[(1 −G1) + (Gn −Gn+1)] , (6a)

Hn ≡ Pr(
n •) =

1
2

[(1 −G1)− (Gn −Gn+1)] . (6b)

Using these relations, equation (5) becomes

d

dt
Gn(t) = 2(Γ + Ω)(Gn−1 − 2Gn + Gn+1). (7)

Γ and Ω are the rates of hopping and branching, respec-
tively, and the factor of 2 accounts for the events in (5)
taking place also at the left edge of the interval. The case
of n = 1 requires a special equation, since G0 is undefined.
Taking into account all the ways G1 might change, we find

∂

∂t
G1(t) = 2Γ (1− 2G1 + G2) + 2Ω(G2 −G1). (8)

Thus, equation (7) may be understood to be valid also for
n = 1, provided that one uses the boundary condition

G0 =
Γ + ΩG1

Γ + Ω
. (9)
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n
↙|↘
• =

n−1 ◦
↙|↘
•◦ +r

n−1 •
↙|↘
•◦ +r

n−1 ◦
↙|↘
•• +r

n−1 •
↙|↘
••

= (1 − r)
n−1 ◦•◦ + r

n−1 ◦•◦ + r
n−1 ••◦ + r

n−1 ◦•• + r
n−1 ••• (12a)

= s
n−1 ◦•◦ + (1 − s)

n •.

Additionally, since the Gn are probabilities , we have

0 ≤ Gn(t) ≤ 1. (10)

Equation (7), with the boundary conditions (9), (10) may
be analyzed exactly for a variety of initial conditions [27].
Here we merely observe that the only steady state solution
supported by these equations is Gn = 1, n = 1, 2, . . . ,
corresponding to the absorbing state ρs = 0. Indeed, the 2-
BAW model with r = 1 lacks an active phase and exhibits
no transition.

4 Parity intervals approximation
for the general case

Consider now the case of finite reaction probability, r < 1.
A transition about some critical probability value rc is
known to take place, from the absorbing state into an
active (non-empty) phase [25], and our goal is to capture
this transition, if only in an approximate fashion. We shall
assume that Γ = Ω = 1, without loss of generality [35].

Consider the first process on the r.h.s. of (5). For
r < 1, there is a difference in the reaction rate depending
on whether the target site is empty or occupied:

n ←• =
n−1 ◦←•+ r

n−1 •←•.
Unfortunately, events such as ◦ • and • •
cannot be expressed in closed form in terms of the Gn.
We therefore rewrite the process in a way that the terms
associated with r < 1, and which cannot be expressed
in closed form, appear as a perturbation, proportional to
s ≡ 1− r:

n ←• =
n−1 ◦←•+ r

n−1 •←•
=

n−1 ◦•+
n−1 •• −(1− r)

n−1 ••
=

n • − s
n−1 •• . (11a)

Likewise, the remainder of the diffusion events in (5) may
be rewritten as

n−1 →• =
n−1 • − s

n−1 ••, (11b)
n ←• =

n • − s
n−1 ••, (11c)

n−1 →• =
n−1 • − s

n−1 •• . (11d)

The branching events too require close inspection of the
target sites. For example, we rewrite the first branching
event of (5) in a perturbative fashion:

See equation (12a) above.
The remainder of the branching terms are similarly ex-
pressed as

n−1
↙|↘
• = s

n−2 ◦•◦+ (1− s)
n−1 •, (12b)

n
↙|↘
• = s

n−1 ◦•◦+ (1− s)
n •, (12c)

n−1
↙|↘
• = s

n−2 ◦•◦+ (1− s)
n−1 •. (12d)

So far everything is exact. In order to proceed, we approx-
imate the terms proportional to s in the simplest possi-
ble way, by neglecting correlations. Thus, for example, we
write

Pr(
n−1 ••) ≈ Pr(

n−1 •) Pr(•) = Fn−1(1−G1),
(13)

for the problematic term in (11a), and similar expressions
for the ones in (11b)–(11d). For the problematic terms
proportional to s in (12), we introduce the notation

Pr(
n ◦) = fn, Pr(

n ◦) = hn,

and

Pr(••) = x, Pr(•◦) = Pr(◦•) = y, Pr(◦◦) = z,

and approximate in the same spirit as above,

Pr(
n−1 ◦ • ◦) ≈ Pr(

n−1 ◦) Pr(•◦) = hn−1y, (14)

and similarly for the other terms. Since y+z = G1, x+z =
G2, and x+2y+z = 1, it follows that x = 1

2 (1−2G1+G2),
y = 1

2 (1−G2), and z = 1
2 (−1 +2G1 + G2) are expressible

in terms of the Gn in closed form. Since fn +Fn = Gn and
hn +Hn = 1−G1, it follows that fn = 1

2 (−1+G1 +Gn +
Gn+1) and hn = 1

2 (1 + G1 −Gn −Gn+1) are too given in
terms of the Gn in closed form.

We are now ready to write down a closed evolution
equation for Gn. Starting from equation (5), using the rep-
resentations of equations (11) and (12) with their respec-
tive approximations, collecting terms and rearranging, we
obtain

d

dt
Gn =

1
2
s(1−G2)Gn−2 + (2− 3s + 2sG1)Gn−1

+
1
2
(−8 + 7s− 4sG1 + sG2)Gn + (2− s)Gn+1, (15)
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λ0 = 1, λ± =
4 − 5s + 4sG1 − sG2 ±

√
(4 − 5s + 4sG1 − sG2)2 + 8s(2 − s)(1 − G2)

8 − 4s
. (18)

valid for n ≥ 3. As expected, this reduces to (7), with
Γ = Ω = 1, in the limit s → 0. The equation for n = 2
is exactly the same as (15), provided that one adopts the
boundary condition

G0 = 1. (16)

G1 requires a separate evolution equation that we find by
considering all the events that contribute to dG1/dt, and
write down, in the spirit of equation (15), as

d

dt
G1 = 2(•←•+

→• − ◦←•+ •
↙|↘
• − ◦

↙|↘
• )

≈ 2{(1− s)x + [(1−G1)− sx]
− y + (1 − s)x− [(1− s)y + syG1]}

= 2− 6G1 + 4G2

+ s(−2 + 5G1 − 4G2 + G1G2). (17)

To compute the steady state, we set dGn/dt = 0.
Equation (15) yields a recursion relation for the Gn, with
constant coefficients (that depend partly on G1 and G2).
Applying the ansatz Gn = λn we find a cubic equation
for λ, with roots

See equation (18) above.

Thus Gn has the general solution

Gn = Aλn
+ + Bλn

− + C,

where A, B, C are constants to be determined from
boundary conditions. Since 0 < s, G1, G2 < 1 (in
the active phase) it follows that |λ±| < 1, and C =
limn→∞ Gn ≡ G∞. Suppose that the initial distribution
of particles is random, at density ρ0, then Gn(t = 0) =
1
2 + 1

2 (1−2ρ0)n, and G∞(0) = 1/2 [27]. Because our model
conserves parity, it follows that C = 1/2. Furthermore, the
boundary condition (16) implies B = 1

2 −A. The remain-
ing coefficient, A, could be found from the relations

G1 = Aλ+ +
(

1
2
−A

)
λ− + 1/2, (19a)

G2 = Aλ2
+ +

(
1
2
−A

)
λ2
− + 1/2, (19b)

G2 =
2s− 2 + (6 − 5s)G1

4− 4s + sG1
. (19c)

The first two relations are required for self-consistency,
since λ± depend on G1 and G2 (as well as on s). Equa-
tion (19c) is derived from (17), with dG1/dt = 0. Because
equations (19) are unwieldy, in practice we set a numerical
value for G1 and search for (A, s, G2) that satisfy (19), us-
ing Mathematica. We thus find a kinetic phase transition
which we next compare to simulations.

The critical point rc = 1 − sc, and the behavior of
the order parameter in its vicinity, can be obtained an-
alytically, by perturbing (19) about the values A = 0,

G1 = 1. We thus find rc = 1
6

√
33− 1

2 = 0.457427 . . . and
ρs ∼ (rc− r)β , with β = 1. The value of β = 1 is in accor-
dance with the expected from a mean-field like solution.

We can also obtain analytically the behavior of the or-
der parameter in the neighborhood of r = 0. The answer,
cs ∼ 1−√2r, is the same as the one obtained from the one-
site and two-site cluster approximations, and seems to fit
the numerical data from simulations exactly. Clearly, the
role of fluctuations diminishes as r decreases away from
the critical point, and it is conceivable that their impact
is negligible in the limit of zero reaction.

Comparison to simulations

In order to test the limit of validity of the above cal-
culations, we have performed a Monte Carlo simulation
of the 2-BAW model. We use a system size L = 104,
and implement the previously discussed rules. The initial
configuration consists of a randomly half-occupied lattice;
we have verified that the obtained long-time asymptotic
results are insensitive to variations of the initial condi-
tion. Plotting the average density as a function of time
in a double logarithmic plot, we identify the critical point
with the value of r for which a separatrix, between curves
that tend asymptotically to a constant (active phase) and
curves that bend downwards (absorbing phase) converging
asymptotically to a t−1/2 decay [36] is obtained. We thus
find rc = 0.495(10). From the slope of the plot the density
decay critical exponent θ = 0.28(1) (extending for about
four decades), is determined. It is in excellent agreement
with previous measurements in the DP2 class [4]. The sta-
tionary density values are represented in Figure 2.

A point worth emphasizing is that finite-size correc-
tions differ from those usually encountered in systems with
absorbing states: Rather than finding a larger stationary
order parameter for smaller systems, as is common, here
one observes a faster decay to the absorbing phase. Ow-
ing to this the exponent ratio β/ν cannot be determined
from finite-size scaling analysis, unless measurements are
restricted to surviving runs as done in [37].

We have also measured the order-parameter critical
exponent, by plotting the average stationary density as a
function of the distance to the critical point (Fig. 3). Our
finding of β = 0.92(5) is again in good agreement with
the commonly accepted value [4]. Other exponents can
certainly be measured, but with θ and β we can already
guarantee that the model is indeed in the DP2 class.

A more stringent test of the mean-field parity inter-
val approximation is obtained by comparing its predic-
tions for Gn to the numerical results of Monte Carlo sim-
ulations, for different values of the control parameter r
(Fig. 4). In all cases, we expect Gn → 1/2 for large n,
since G∞ = 1/2 and parity is conserved. The relevant
question is how well the approximation captures the Gn
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Fig. 3. Log-log plot of the order parameter vs. the distance
to the critical point. Shown are simulation results (curve with
diamonds) compared to the prediction from the parity inter-
val approximation (solid curve). Slopes of 1 (top, dashed line)
and 0.92 (bottom, dotted line) are shown for comparison. The
latter represents the accepted value of the order parameter
exponent β for the DP2 universality class in d = 1. Nearby
criticality, the mean-field solution converges to β = 1. Surpris-
ingly, the mean-field slope agrees quite well with the expected
value of 0.92, when rc − r � 0.1.

for n small. Because the typical distance between parti-
cles grows as one approaches criticality, we plot the results
against ν = ρn rather than n, in order to compare them
better.

For small values of r (as shown in Fig. 4), deep into the
active phase, spatial correlations play a minimal role and
the theoretical prediction matches simulations remarkably
well, for all ν. As r is raised toward the critical point,
correlations play a larger role and the fit worsens. For ex-
ample for r = 0.38 (ρ = 0.2) the theoretical curve fits
experiments well only up to ν ≈ 2 (and, of course, also
at ν � 1). Closer still to the critical point, at r = 0.45
(ρ = 0.1), the theoretical prediction is good only up to
ν ≈ 1. The large deviations observed for ν � 1 in this last
case indicate that the state of the system near the DP2
transition, despite being dilute, is highly ordered and cor-
related.

The approximate curves converge to the exact value
for Gn → 1/2 for asymptotically large values of ν.

5 Discussion and future perspectives

We have presented an approximation, based on the
method of parity intervals, for the analysis of the DP2
transition observed in the 2-BAW model in one dimen-
sion with finite reaction rates. The key ingredient of our
approach is that it respects the parity conservation im-
plicit in the dynamical rules of the 2-BAW model: parity
conservation is here responsible for the Z2 symmetry that
underlies transitions in the DP2 class, and provides a sur-
prisingly good description of the transition at a mean-field
level.

0 10ν
0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

G
n

Fig. 4. Gn in the active phase for three different stationary ac-
tivity values: (from the bottom to the top) 0.633, 0.2, and 0.1,
as computed in a) Monte Carlo simulation for r = 0.082,
r = 0.38 and r = 0.45 respectively (curves with symbols)
and b) interval approximation (continuous lines). Instead of
plotting as a function on n in order to make more meaning-
ful the comparison we use ν, defined as n divided the average
interparticle distance in each case.

An interesting finding is the fact that spatial correla-
tions play no role in the limit of zero reaction rate, r → 0.
In this “saturation” limit, the dependence of the order pa-
rameter upon the critical field, ρ ∼ 1 − √2r, is captured
even by the simplest one-site cluster approximation.

Extensive numerical simulations of the DP2 transition
suggest a value of β = 0.92(2) for the order parameter crit-
ical exponent [4]. On the other hand, an exact value β = 1
was conjectured by Jensen and later supported by numer-
ical simulations combined with Padé approximants [16].
Regrettably, we have little to add to this controversy. Our
mean-field results away from criticality (rc − r � 0.1) are
consistent with β = 0.92, while β → 1 as we approach the
transition (Fig. 3). However, the large spatial correlations
observed near criticality are not faithfully modeled by our
mean-field like approach (Fig. 4), and the values we obtain
for rc − r � 0.1 are unreliable. It would be desirable to
improve our approximation so as to better model regions
closer to rc. Our attempts in this direction have been fu-
tile, so far. Arguably, the simplest improvement would be
to replace the approximation of equation (13) by the more
accurate:

Pr(
n−1 ••) ≈ Pr(

n−1 •) Pr(••)
Pr(•) ,

and likewise elsewhere. However, on employing this
scheme, instead of an improved result we find that the
transition disappears. A similar phenomenon is known
to occur also in mean-field cluster approximations, where
sometimes increasing the cluster size yields lower quality
predictions.

Other interesting open prospects include using the par-
ity interval approximation for the analysis of dynamical
aspects of the DP2 transition. We have here systemati-
cally assumed that all time derivatives are zero, thereby
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accessing the steady state alone. Analyzing the very same
equations with the full time dependence built in should
yield a prediction for the order parameter time decay. Ad-
ditionally, the equations could be modified to describe a
spatially inhomogeneous system. In that case, one could
study the dynamics of spreading.
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Computacional Carlos I, University of Granada, during a cru-
cial phase of the project. We also gratefully thank G. Odor and
A. Szolnoki, for very useful comments on the cluster mean field
calculations that have helped to improve the paper.

References

1. Percolation Structures and Processes, edited by G.
Deutsher, R. Zallen, J. Adler, Annals of the Israel Physical
Society, Vol. 5 (Hiler, Bristol, 1980)

2. E. Domany, W. Kinzel, Phys. Rev. Lett. 53, 311 (1984)
3. T.M. Ligget, Interacting Particle Systems

(Springer Verlag, New York, 1985)
4. H. Hinrichsen, Adv. Phys. 49, 1 (2000); G. Odor,

cond-mat/0205644; G. Grinstein, M.A. Muñoz, in Fourth
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21. I. Dornic, H. Chaté, J. Chave, H. Hinrichsen, Phys. Rev.

Lett. 87, 045701 (2001)
22. I. Jensen, Phys. Rev. E 50, 3623 (1994)
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Chem. Phys. 115,73 (2001)

30. D. ben-Avraham, M.A. Burschka, C.R. Doering, J. Stat.
Phys. 60, 695 (1990)

31. M. Henkel, H. Hinrichsen, J. Phys. A34, 1561 (2001)
32. D. Zhong, D. ben-Avraham, J. Phys. A 28, 33 (1995);

D. ben-Avraham, Phys. Rev. Lett. 71, 3733 (1993); E.
Ben-Naim, P. Krapivsky, J. Phys. A 27, L481 (1994)

33. A. Sudbury, Ann. Probab. 18, 581 (1990); H. Takayasu,
N. Inui, J. Phys. A 25, L585 (1992)

34. A. Szolnoki (private communication) has performed a clus-
ter mean field analysis of the present model, and observed
that a phase transition is obtained considering clusters
with at least four sites. He has gone up to 7-sites, and
shown that the results improve very slowly upon enlarging
cluster size

35. The same transition is observed whether one fixes r and
treats Γ/Ω as a critical field, or whether one fixes Γ/Ω and
takes r to be the critical field. Here we adopt the latter,
with Γ/Ω = 1

36. Observe that in this type of systems we do not have an
exponential decay in the absorbing phase, but a power-law
one, controlled asymptotically by the reaction A + A → 0

37. R. Dickman, M.A.F. de Menezes, Phys. Rev. E 66, 045101
(2002)


